Zukünftige Speichertechnologien, Teil 1

20 Atome pro Bit

Der von Professor Himpsel entwickelte Silizium-Speicherchip hat auf seiner Oberfläche Längsrillen. Darin liegen einzelne Silizium-Atome wie Tennisbälle nebeneinander in einer Rinne. Werden nun einzelne Atome mit der Spitze eines STM (Scanning Tunneling Microscope) herausgenommen, entstehen Fehlstellen, die als logische NULL gelten. Atome, die am Platz bleiben, repräsentieren jeweils eine logische EINS. Lesen, Schreiben und Formatieren eines solchen atomaren Speichers geschieht bei Raumtemperatur. Zwar ist die Manipulation einzelner Atome bei extrem tiefen Temperaturen technisch einfacher und präziser, aber auch teurer.

Die Rinnen (Gräben) an der Silizium-Oberfläche wurden nicht in herkömmlicher Wafer-Technik belichtet und herausgeätzt. Solche Strukturen (heute etwa 90 nm) wären um Größenordnungen zu grob.

Professor Himpsel bedampfte seine Silizium-Speicherchips extrem dünn mit Gold. Dadurch entstanden Strukturen mit Längsrillen. Danach wurde darauf noch Silizium aufgedampft. Die Siliziumatome fallen von allein in die vom Goldüberzug erzeugten Gräben, wie Eier in den Eierkarton. Dabei entstehen automatisch regelmäßige Abstände zwischen den Atomen, die somit einzeln herausgenommen oder eingefügt werden können, ohne Nachbaratome zu beeinflussen. Das sind dann, wie oben schon beschrieben, die atomaren Bits.

Diese Technik benötigt sicher noch Jahre oder Jahrzehnte, bis sie kommerziell genutzt werden kann. Nachteilig ist, dass ein Vakuum benötigt wird. Das Lese-/Schreib-Gerät in Form eines STM ist langsam, weil es nur einzelne Atome bewegt, und außerordentlich teuer. Die Signalstärke ist offensichtlich extrem klein. Die Verstärkung aus dem thermischen Rauschen heraus ist sehr aufwendig.

Die Speicherdichte übertrifft dabei selbst die in der Natur nach einem langen Evolutionsprozess erreichten Werte: Franz Himpsel benötigt etwa 20 Atome je Bit. In der DNA werden 32 Atome für eine Informationseinheit je Basenhalbpaar benötigt.