Günstig & sparsam: Neuer Core 2 Duo E4300 im Test

21.01.2007 von Christian Vilsbeck
Mit dem neuen Einsteiger-Prozessor Core 2 Duo E4300 greift Intel das untere Preissegment an. Für zirka 150 Euro gibt es die 1,8-GHz-Dual-Core-CPU. AMD setzt einen besonders stromsparenden Athlon 64 X2 3800+ erfolgreich dagegen.

Die Performance von Intels Core-2-Prozessoren überzeugte bis dato einhellig. AMDs konkurrierende Athlon-64-Dual-Core-Prozessoren werden in der Rechenleistung deutlich abgehängt. Beim Energieverbrauch müssen sich die Socket-AM2-Modelle dagegen nicht verstecken. Doch bei der gerne zitierten Performance pro Watt liegen Intels Core-2-Modelle in Führung.

Somit gibt es bei Intel „mehr“ Prozessor fürs Geld. Jetzt bietet der Hersteller mit dem neuen Einsteigermodell Core 2 Duo E4300 eine Zweikern-CPU in der 150-Euro-Preisklasse an. Der E4300 arbeitet mit 1,8 GHz Taktfrequenz. Beide Cores greifen auf den gemeinsamen 2 MByte großen L2-Cache zurück – wie bei den bekannten Core-2-Duo-Modellen E6300 und E6400.

Core 2 Duo E4300: Der Dual-Core-Prozessor für den Sockel LGA775 arbeitet mit 1,8 GHz Taktfrequenz und einem FSB800. Den zwei MByte großen L2-Cache teilen sich beide Kerne dynamisch.

Statt mit einem FSB1066 überträgt der Core 2 Duo E4300 seine Daten mit 800 MHz Taktfrequenz. Einsparungen gibt es auch bei den Features: Die Virtualisierungstechnologie VT „Vanderpool“ beherrscht der E4300 nicht. SpeedStep zum Stromsparen bleibt dem Einsteigermodell allerdings erhalten. Und unter extremer Last bleiben 65 Watt Energiebedarf das Maximum.

Athlon 64 X2 3800+ EE SFF: AMDs Dual-Core-CPU für den Socket AM2 arbeitet mit 2,0 GHz Taktfrequenz. Jeder Kern besitzt einen 512 KByte großen L2-Cache. Das Modell „Energy Efficient Small Form Factor“ begnügt sich mit 35 Watt TDP.

Doch AMD kann dem Sparmaxe von Intel etwas entgegen setzen: Der Athlon 64 X2 3800+ EE SFF für den Socket AM2 begnügt sich mit einer TDP von nur 35 Watt. Die von tecCHANNEL getestete CPU ist bei Fachhändler für ebenfalls zirka 150 Euro erhältlich. Eine 65-Watt-Version gibt es bereits für 110 Euro. AMD realisiert die 2,0-GHz-Dual-Core-CPUs mit je 512 KByte L2-Cache pro Kern noch in 90-nm-Strukturbreite.

Im tecCHANNEL-Testlabor tritt der neue Core 2 Duo E4300 gegen AMDs Athlon 64 X2 3800+ an. Im Preissegment bis 150 Euro entfacht ein harter Kampf.

SYSmark2004 SE

Mit dem Benchmark-Paket SYSmark2004 SE bietet BAPCo eine aktualisierte Version zur Ermittlung der Systemleistung. Die Second Edition verwendet wieder 17 Anwendungen und arbeitet wahlweise mit den Windows XP in der 32- und 64-Bit-Edition zusammen. SYSmark2004 SE öffnet mehrere Programme gleichzeitig und lässt die Applikationen teilweise auch im Hintergrund arbeiten. Somit profitieren Dual- und Quad-Core-CPUs von zusätzlichen Prozessorkernen.

Neben einem Gesamtwert für die Systemleistung bietet SYSmark2004 SE detaillierte Ergebnisse in den Kategorien Office Productivity und Internet Content Creation an.

Gesamtwertung: Intels Core 2 Duo E4300 arbeitet trotz Cache-Reduktion und nur 1,8 GHz Taktfrequenz auf dem Niveau eines Athlon 64 X2 5000+.

SYSmark2004 SE: Internet Content Creation

Im Workload Internet Content Creation von SYSmark2004 SE sind Prozessoren mit schnellen FPUs im Vorteil. Die Anwendungen im diesem Testblock unterstützen zudem in hohem Maße SSE2 und Multiprocessing. Zu den Applikationen des Workloads Internet Content Creation zählen Macromedia Dreamweaver und Flash MX, Discreet 3ds max 5.1, Adobe AfterEffects 5.5, Photoshop 7.0.1 und Premiere 6.5, Microsofts Windows Media Encoder 9, WinZip 8.1 sowie McAfee VirusScan 7.0.1.

Internet Content Creation: Vor allem SMP-fähige Anwendungen wie 3ds max und Photoshop erfahren durch die Dual-Core-Technologie eine erhebliche Beschleunigung. Die Top-Modelle der Core-2-Prozessoren arbeiten in einer anderen Liga. Dem neuen Core 2 Duo E4300 kann AMDs Athlon 64 X2 3800+ ebenfalls kein Paroli bieten. Alle Core-2-Prozessoren profitieren hier auch von ihrer hohen SSE-Performance.

SYSmark2004 SE: Office Productivity

Der Workload Office Productivity in SYSmark2004 SE verwendet insgesamt zehn verschiedene Applikationen. Hierzu zählen Microsofts Word, Excel, PowerPoint, Access und Outlook in der Version 2002, McAfee VirusScan 7.0, ScanSoft Dragon Naturally Speaking 6, WinZip 8.1, Adobe Acrobat 5.0.5 sowie der Internet Explorer 6.0.

Office Productivity: Büroarbeiten erledigt der Core 2 Duo E4300 gegenüber dem auf gleichem Preisniveau liegenden Athlon 64 X2 3800+ EE SFF (35W-Version) 19 Prozent flinker. Selbst der Athlon 64 X2 5200+ muss sich Intels Einsteigermodell geschlagen geben.

SPECint_base2000

Wir setzen die SPEC-Benchmarks praxisnah ein und kompilieren sie für das Base-Rating. Dazu verwenden wir Intels C++ 9.1 und Fortran 9.1 sowie MS Visual Studio 2005 .NET für alle Integer-Tests. Auch AMD und Intel verwenden diese Compiler für das Base-Rating, wie man an den von beiden Firmen offiziell gemeldeten Integer-Resultaten sehen kann.

Der SPECint_base2000-Benchmark arbeitet single-threaded und nutzt die Vorteile von Hyper-Threading, Dual- und Quad-Core nicht. Die ermittelten Werte gelten als Indiz für die Integer-Performance der Prozessoren.

SPECint_base2000: Der Core 2 Duo deklassiert selbst in der abgespeckten Version E4300 AMDs Athlon 64 X2 5200+. Der 3800er bildet das Schlusslicht – der kleine Cache wird zum Nachteil.

SPECint_rate_base2000

Bei den Integer-Berechnungen von SPECint_rate_base2000 ermittelt die Benchmark-Suite den maximalen Durchsatz durch Verwendung mehrerer Tasks. Dabei arbeiten multiple Kopien des Benchmarks parallel. Typischerweise entspricht die Anzahl der Tasks/Kopien der Anzahl der - virtuellen - Prozessoren des Systems.

So läuft SPECint_rate_base2000 beim Athlon 64 mit einer Kopie, beim Athlon 64 X2, Core 2 Duo, Core Duo, Pentium 4 (Hyper-Threading) und Pentium D (Dual-Core) mit zwei Kopien sowie beim Core 2 Quad Q6600 mit vier Kopien. Bei diesem Test wird der Vorteil von Hyper-Threading und mehreren Kernen ausgenutzt. Bei Singlethread-Prozessoren wie dem Athlon 64 führen SPECint_rate_base2000-Tests mit einer und zwei Kopien zum gleichen Ergebnis - der maximale Durchsatz bleibt unverändert.

SPECint_rate_base2000: Die Core-2-Prozessoren arbeiten parallel laufende Integer-Programme ebenfalls mit Abstand schneller ab. So hält selbst der „kleine“ E4300 die AMD-CPUs hinter sich. Beim Vergleich des Athlon 64 X2 3800+ und 4000+ (beide 2,0 GHz) zeigt den Performance-Einfluss des L2-Cache: Der 4000er (1M L2 pro Kern) arbeitet 9 Prozent schneller als der 3800 (512K L2 pro Kern).

SPECfp_base2000

Wir setzen die SPEC-Benchmarks praxisnah ein und kompilieren sie für das Base-Rating. Dazu verwenden wir Intel C++ 9.1 und MS Visual Studio 2005 .NET sowie Intel Fortran 9.1 für alle Fließkommatests. Bei den AMD-Prozessoren testen wir die Floating-Point-Performance zusätzlich mit den PGI-6.0-Compilern. Auch AMD und Intel benutzen diese Compiler für das Base-Rating bei den Fließkomma-Benchmarks, wie man an den von beiden Firmen offiziell gemeldeten FP-Resultaten sehen kann.

Der SPECfp_base2000-Benchmark arbeitet single-threaded und nutzt die Vorteile von Hyper-Threading, Dual- und Quad-Core nicht. Die ermittelten Werte gelten als Indiz für die Floating-Point-Performance der Prozessoren.

SPECfp_base2000: Der Core 2 Duo E4300 nutzt seine hohe SSE2-Performance trotz reduziertem Cache und geringerer FSB-Geschwindigkeit gut aus. AMDs Prozessoren leiden bei den Fließkommatests auch unter ihren kleinen L2-Caches.

SPECfp_rate_base2000

Bei den Floating-Point-Berechnungen von SPECfp_rate_base2000 ermittelt die Benchmark-Suite den maximalen Durchsatz durch Verwendung mehrerer Tasks. Dabei arbeiten multiple Kopien des Benchmarks parallel. Typischerweise entspricht die Anzahl der Tasks/Kopien der Anzahl der - virtuellen - Prozessoren des Systems.

So läuft SPECfp_rate_base2000 beim Athlon 64 mit einer Kopie, beim Athlon 64 X2, Core 2 Duo, Core Duo, Pentium 4 (Hyper-Threading) und Pentium D (Dual-Core) mit zwei Kopien sowie beim Core 2 Quad Q6600 mit vier Kopien. Bei diesem Test wird der Vorteil von Hyper-Threading und mehreren Kernen ausgenutzt. Bei Singlethread-Prozessoren wie dem Athlon 64 führen SPECfp_rate_base2000-Tests mit einer und zwei Kopien zum gleichen Ergebnis - der maximale Durchsatz bleibt unverändert.

SPECfp_rate_base2000: Die Athlon-64-Prozessoren können aufgrund ihrer geringeren SSE-Performance mit den Intel-CPUs nicht mithalten. AMDs Athlon 64 X2 3800+, 4600+ und 5000+ sind durch ihre kleineren L2-Caches zusätzlich benachteiligt (je 512 KByte pro Core).

Linux 64 Bit: Linpack

Linpack dient als verbreitetes Tool zum Ermitteln der Floating-Point-Performance von Highend-Computern. Das Ergebnis wird in Flops (Fließkomma-Operationen pro Sekunde) angegeben. Linpack löst komplexe lineare Gleichungssysteme.

Unter SUSE Linux 10.1 64-Bit-Edition setzen wir die 64-Bit-Version von Linpack 2.1.2 ein. Der SMP-fähige Benchmark setzt EMT64-Prozessoren mit SSE3-Unterstützung voraus. AMDs Athlon-64-Prozessoren mit SSE3 arbeiten mit der von Intel-Compilern erstellten Linpack-Version ebenfalls problemlos zusammen und nutzen die Befehlserweiterung.

Bei unseren Tests löst Linpack bis zu 10.000 Gleichungssysteme. Damit benötigt der Benchmark maximal 763 GByte Arbeitsspeicher. Im Diagramm finden Sie die von den Prozessoren maximal erreichten GFlops.

Im Vorteil: Der Core 2 Duo E4300 bleibt aufgrund seiner besseren SSE-Performance mit großem Abstand vor dem Athlon 64 X2 3800+.

Analyse: SunGard ACR

SunGards Adaptiv Credit Risk 2.5 ist ein Analysetool für den Finanzbereich. Basierend auf modifizierten Monte-Carlo-Simulationen berechnet das Programm den künftigen Wert einer Anlage auf Basis vorhandener Marktdaten.

SunGards Adaptiv Credit Risk wurde in C# für Microsofts .NET-Umgebung programmiert. Spezielle Mathematik-Bibliotheken wie Intels MKL oder AMDs Core Math Library ACML verwendet Adaptiv Credit Risk nicht. Das Analysetool arbeitet multithreaded und unterstützt Dual-Core-Prozessoren optimal. SunGard arbeitet überwiegend mit Integer-Operationen.

Aufholjagd: Der Athlon 64 X2 3800+ setzt sich bei der Monte-Carlo-Simulation erstmals vom Core 2 Duo E4300 ab.

Audio-Enkodieren: iTunes 6

Apples iTunes 6 ermöglicht das Enkodieren von verschiedenen Audio-Formaten. Über den integrierten MP3-Codec wandelt die digitale Jukebox beispielsweise WAV-Audio-Files in komprimierte MP3-Dateien um. Nur beim MP3-Enkodieren nutzt iTunes 6 zwei Threads und somit die Vorteile von Dual-Core-Prozessoren aus.

Um die Enkodier-Performance der CPUs zu überprüfen, legen wir die 13 Musikstücke der Audio-CD „Gwen Stefani: Love. Angel. Music. Baby.“ mit einer Gesamtspieldauer von 52,1 Minuten mit iTunes als unkomprimierte WAV-Dateien auf die Festplatte. Die folgende MP3-Erstellung erledigt iTunes mit einer Audio-Qualität von 192 kbps.

Im Takt: AMDs Athlon 64 X2 3800+ bleibt an Intels Core 2 Duo E4300 dran.

Video-Enkodieren: iTunes 6

Mit Apples iTunes 6 wandeln wir außerdem mit den integrierten De- und Encodern den 1080i-High-Definition-Trailer von Ice Age 2 im H.264-Format ins MPEG-4-Format mit 128 KBit/s und einer „mobilen“ Auflösung von 320 x 176 Bildpunkten. Dieses Video-Format ist für Apples iPod-Player optimiert. iTunes 6 nutzt beim Umwandeln des Videos die Vorteile von Dual-Core-Prozessoren aus.

Kurzfilm: Beim Wandeln von Videos zieht der Core 2 Duo E4300 dem Athlon 64 X2 3800+ wieder davon. Die L2-Cache-Größe ist hier nebensächlich: Die 2,0-GHz-Modelle Athlon 64 3800+ (2 x 512K L2) und 4000+ (2 x 1M L2) sind gleich schnell.

Rendering: 3ds Max 8

Discreet/Autodesk bietet mit 3ds Max 8 eine professionelle Software für 3D-Modelling, Animation und Rendering an. Bei den Render-Vorgängen nutzt 3ds Max 8 Multiprocessing voll aus. Die Dual- und Quad-Core- sowie Hyper-Threading-Technologien wirken somit beschleunigend.

Die verwendeten Render-Szenen basieren auf der Benchmark-Suite SPECapc for 3ds Max 7 von SPEC.org. Die Grafikkarten-Performance spielt beim Rendering keine Rolle.

Szene Underwater: Der Core 2 Duo E4300 und AMDs Athlon 64 X2 3800+ erledigen das Unterwasser-Rendering gleich schnell. Einsam in Führung liegt hier Intels Quad-Core-Prozessor - Rendering zählt zur Paradedisziplin für Multi-Core-Prozessoren.
Szene Radiosity: Jetzt zieht der Core 2 Duo E4300 dem Athlon 64 X2 3800+ davon. Auch Intels E6400 überholt den AMDs Athlon 64 X2 4600+. Es wird deutlich, dass die Render-Performance der Prozessoren vom Workload - und somit der Cache-Größe - abhängig ist.

Rendering: CINEBENCH 9.5

Mit dem CINEBENCH 9.5 stellt Maxon eine neue Version des bekannten Benchmark-Tools bereit. CINEBENCH 9.5 basiert auf Cinema 4D Release 9.5 und führt wieder Shading- und Raytracing-Tests durch.

Der Raytracing-Test von CINEBENCH 9.5 überprüft die Render-Leistung des Prozessors. Eine Szene "Daylight" wird mit Hilfe des Cinema-4D-Raytracers berechnet. Sie enthält 35 Lichtquellen, wovon 16 mit Shadowmaps behaftet sind und so genannte weiche Schatten werfen.

Bei dem FPU-lastigen Test spielt die Leistungsfähigkeit der Grafikkarte eine untergeordnete Rolle. Auch höhere Speicher- und FSB-Bandbreiten nutzen beim Rendering von CINEBENCH 9.5 wenig - der Test läuft überwiegend in den ersten beiden Cache-Stufen ab.

1 Thread: Beim Rendering wird jetzt nur ein Prozessorkern verwendet. Der Core 2 Duo E4300 mit 1,8 GHz Taktfrequenz platziert sich knapp vor dem Athlon 64 X2 3800+ mit 2,0 GHz Arbeitstakt. Dass beim CINEBENCH-Rendering dem 3800er selbst 512 KByte L2-Cache ausreichen, zeigt der Vergleich mit dem Athlon 64 X2 4000+, dem 1 MByte im Kern zur Verfügung steht.
Alle Threads: Jetzt nutzt CINEBENCH alle verfügbaren – physikalischen und virtuellen – Prozessorkerne. Der Core 2 Duo E4300 bleibt auch hier knapp vor dem Athlon 64 X2 3800+.

Rendering & Enkodieren

In einem Multitask-Szenario führen wir das Rendering von CINEBENCH 9.5 bei einer konstanten Hintergrundlast durch. Diese realisieren wir mit LAME durch das Wandeln einer WAV-Audio-Datei in ein komprimiertes MP3-File. Das Enkodieren erfolgt in einer Endlosschleife. LAME arbeitet beim MP3-Erstellen durch unsere gewählte Einstellung im Single-Thread-Modus und lastet einen CPU-Kern voll aus.

Beim Render-Vorgang nutzt CINEBENCH 9.5 alle zur Verfügung stehende Prozessorkerne. In der Tabelle sehen Sie, wie stark die Render-Performance einbricht, wenn eine konstante Hintergrundlast arbeitet.

Rendering & Enkodieren

Prozessor

CINEBENCH 1 Thread

CINEBENCH alle Threads

CINEBENCH alle Threads + LAME

Performance-Einbruch

Alle CINEBENCH-Ergebnisse in Punkten. Höhere Werte sind besser.

Athlon 64 X2 3800+ EE SFF

295

542

293

-45,9 %

Athlon 64 X2 4000+

295

552

296

-46,4 %

Athlon 64 X2 4600+ EE

353

651

346

-46,9 %

Athlon 64 X2 4800+

354

656

353

-46,2 %

Athlon 64 X2 4800+ S939

354

655

350

-46,6 %

Athlon 64 X2 5000+

381

707

386

-45,4 %

Athlon 64 X2 5200+

384

706

386

-45,3 %

Core 2 Duo E4300

300

561

295

-47,4 %

Core 2 Duo E6400

356

663

341

-48,6 %

Core 2 Duo E6700

445

831

427

-48,6 %

Core 2 Q6600

394

1276

995

-22,0 %

Core Duo T2600

325

604

315

-47,8 %

Pentium 4 670

322

378

204

-46,0 %

Pentium D 920

239

439

233

-46,9 %

Pentium D 960

305

557

304

-45,4 %

Bei allen Dual-Core-CPUs bricht die Rendering-Performance um zirka 45 bis 49 Prozent ein, wenn LAME im Hintergrund enkodiert. Der Quad-Core-Prozessoren Core 2 Quad Q6600 rendert dagegen nur 22 bis 23 Prozent langsamer.

OpenGL: CINEBENCH 9.5

Der Leistungstest OpenGL-HW von CINEBENCH 9.5 führt zwei Animationen mit Hilfe der OpenGL-Beschleunigung der Grafikkarte aus. Die Animation "Pump Action" besteht aus 37.000 Polygonen in 1046 Objekten, in der zweiten Szene "Citygen" sind zwei Objekte mit insgesamt 70.000 Polygonen enthalten.

Eine Liga: Cinema 4D - und somit der Prozessor - übermittelt der Grafikkarte lediglich die Position der Lichtquellen sowie die Geometrie. Dual-Core und Hyper-Threading erwirken keinen Vorteil. An der Spitze vereinen sich die Core-2-Modelle.

Beim Leistungstest OpenGL-SW übernimmt die Cinema-4D-Engine zusätzlich die Berechnung der Beleuchtung.

Preisfrage: Jetzt muss der Prozessor zusätzliche Rechenarbeit übernehmen. Der grafikintensive Test zieht aus der Dual-Core-Technologie keinen Nutzen. Bei den ähnlich teuren Core 2 Duo E4300 und Athlon 64 X2 3800+ EE SFF herrscht Ausgeglichenheit. Intels Core-2-Topmodelle liegen dagegen wieder vorne.

OpenGL: SPECviewperf 9

Die Leistungsfähigkeit von OpenGL-Anwendungen verifizieren wir mit dem neuen SPECviewperf 9 der SPECopc. Schließlich sehen sowohl Intel als auch AMD ihre Highend-Sprösslinge gerne im professionellen Workstation-Markt. Das CAD-Paket beinhaltet neun verschiedene Tests, basierend auf realen CAD/CAM-Anwendungen: 3ds Max, CATIA, EnSight, Lightscape, Maya, Pro/ENGINEER, SolidWorks, UGS Teamcenter Visualzation Mockup und UGS NX.

Besonders die Anwendung Lightscape Viewset (light-08) nutzt die OpenGL-Beschleunigung der Grafikkarte voll aus. Das Lightscape Visualization System von Discreet Logic kombiniert proprietäre Radiosity-Algorithmen mit einem physikalisch basierenden Beleuchtungssystem.

light-08: Multi-Core und Hyper-Threading nutzen hier nichts. Die Core-2-Prozessoren arbeiten der Grafikkarte besser zu als die Athlon-64-X2-Modelle. Innerhalb einer CPU-Familie entscheidet die Taktfrequenz über die Rangfolge, die Cache-Größe ist weniger wichtig.

Alle Einzelergebnisse des SPECviewperf 9 finden Sie in der Tabelle:

SPECviewperf 9

Prozessor

3dsmax-04

catia-02

ensight-03

light-08

maya-02

proe-04

sw-01

ugnx-01

tcvis-01

Alle Ergebnisse in fps. Höhere Werte sind besser.

Athlon 64 X2 3800+ EE SFF AM2

8,74

10,07

10,63

8,57

9,69

6,95

11,34

8,73

4,03

Athlon 64 4000+ S939

9,78

10,81

9,84

9,85

10,97

6,34

12,33

8,64

2,94

Athlon 64 X2 4000+ AM2

8,75

9,79

9,39

8,62

9,75

5,94

11,75

8,34

2,87

Athlon 64 X2 4600+ EE AM2

10,24

11,40

10,23

10,27

11,16

6,54

12,67

8,92

2,96

Athlon 64 X2 4800+ S939

10,05

11,14

10,10

10,12

10,99

6,39

12,32

8,78

2,89

Athlon 64 X2 4800+ AM2

10,25

11,45

10,25

10,31

11,37

6,54

12,65

8,96

2,98

Athlon 64 X2 5000+ AM2

10,81

12,02

10,51

11,08

11,76

6,73

12,89

9,02

2,97

Athlon 64 X2 5200+ AM2

10,86

12,04

10,56

11,11

12,02

6,76

12,92

9,05

2,98

Core 2 Duo E4300 DDR2-800

9,34

10,58

10,64

9,13

12,77

7,46

16,30

8,52

4,36

Core 2 Duo E6400 DDR2-800

11,23

12,79

11,67

10,96

15,45

8,46

17,74

9,64

4,47

Core 2 Duo E6700 DDR2-800

12,48

14,52

12,49

13,18

17,87

9,21

18,73

10,15

4,51

Core 2 Quad Q6600 DDR2-800

11,95

13,76

12,09

12,10

16,76

8,84

18,19

9,88

4,46

Core Duo T2600

9,56

10,74

10,56

9,29

12,59

7,05

14,62

7,46

3,76

Pentium 4 670

10,48

11,75

11,48

10,80

14,35

7,59

15,81

8,77

4,13

Pentium D 920

8,05

9,01

10,14

8,24

11,42

6,19

13,34

7,56

3,80

Pentium D 960

9,81

11,00

11,16

10,10

13,28

7,29

15,31

8,53

4,10

OpenGL & Enkodieren

In einem zweiten Multitask-Szenario überprüfen wir den Einbruch der Framerate des OpenGL-3D-Spiels Quake 4, wenn im Hintergrund MP3s erstellt werden. Das Enkodieren realisieren wir mit LAME durch das Wandeln einer WAV-Audio-Datei in ein komprimiertes MP3-File - in einer Endlosschleife. LAME arbeitet beim MP3-Erstellen durch unsere gewählte Einstellung im Single-Thread-Modus und lastet einen CPU-Kern aus.

Quake 4 unterstützt durch ein aktivierbares SMP bereits Dual-Core-Prozessoren. In der Tabelle sehen Sie den Unterschied in der Framerate ohne und mit SMP-Aktivierung bei Quake 4. Bei aktiver LAME-Hintergrundlast lassen wir Quake 4 mit eingeschaltetem SMP laufen.

Rendering & Enkodieren

Prozessor

Quake 4 SMP off [fps]

Quake 4 SMP on [fps]

Quake 4 SMP on + LAME [fps]

Performance-Einbruch

Quake 4: Medium Quality, Auflösung 1280x1024, AA off

Athlon 64 X2 3800+ EE SFF

63

94

82

-12,8 %

Athlon 64 X2 4600+ EE

70

104

89

-14,4 %

Athlon 64 X2 5000+

71

105

92

-12,4 %

Athlon 64 X2 5200+

74

108

94

-13,0 %

Core 2 Duo E4300

71

111

93

-16,2 %

Core 2 Duo E6400

83

116

104

-10,3 %

Core 2 Duo E6700

99

126

113

-10,3 %

Core 2 Quad Q6600

91

124

124

0 %

Während die Dual-Core-Prozessoren mit Hintergrundlast um zirka 10 bis 16 Prozent in der Framerate einbrechen, bleibt die Quake-4-Performance des Core 2 Quad Q6600 konstant. Weil Quake nur von einem zweiten Prozessorkern profitiert, stehen beim Quad-Core-Modell zwei weitere Kerne anderen Applikationen voll zur Verfügung. Das Single-Thread-LAME-Enkodieren im Hintergrund wirkt sich beim Core 2 Quad Q6600 auf die Framerate somit nicht negativ aus.

DirectX: 3DMark06

Futuremarks 3DMark06 bietet verbesserte Testabläufe für das Shader Model 2 und High Dynamic Range (HDR) Shader Model sowie neue Benchmark-Routinen für Prozessoren. Damit soll der Benchmark laut Hersteller zukunftssicher sein und grafische Strukturen abtesten, die sich erst in zwei Jahren tatsächlich in Spielen wieder finden werden.

3DMark06 nutzt als erstes Produkt von Futuremark die Ageia Phys X-Software-Physics-Bibliothek in zwei spieleähnlichen CPU-Tests. Außerdem kommen im 3DMark06 Algorithmen zum Einsatz, die künstliche Intelligenz simulieren sollen. Insgesamt besteht der Benchmark aus zwei CPU- und vier Grafiktests. Daraus errechnet sich die Gesamtpunktzahl, die Auskunft über die Spiel-Performance des Rechners gibt.

Gesamtwertung: Der Vorteil der Dual-Core-Technologie fließt in das Ergebnis ein. Der 150 Euro teure Core 2 Duo E4300 sorgt für die gleiche 3D-Performance wie der 35-Watt-AMD-Prozessor Athlon 64 X2 3800+ EE SFF.

3Dmark06 bietet erstmals Unterstützung für Multi-Core-Prozessoren oder Hyper-Threading. Der Benchmark gibt als Teilergebnis einen Wert für die Leistungsfähigkeit der CPUs bei DirectX-Anwendungen aus.

CPU-Test: Ohne Hilfe der Grafikkarte setzt sich der Core 2 Duo E4300 geringfügig vom Athlon 64 X2 3800+ ab. Dagegen überholt der Athlon 64 X2 5000+ jetzt den E6400er.

32-Bit-Transfer

Die Cache- und Speicher-Performance der Prozessoren überprüfen wir mit unserem Programm tecMem aus der tecCHANNEL Benchmark Suite Pro. tecMem misst die effektiv genutzte Speicherbandbreite zwischen der Load/Store-Unit der CPU und den unterschiedlichen Ebenen der Speicherhierarchie (L1-, L2-Cache und RAM). Die Ergebnisse erlauben eine getrennte Analyse von Load-, Store- und Move-Operationen.

Core 2 Duo E4300 (1,80 GHz) DualDDR2-800 CL4: Die Core-CPU erreicht im Cache mit 13.570 MByte/s eine geringere Transferleistung als der Athlon 64 X2 3800+. Aus dem DDR2-800-Speicher holt der Core 2 Duo E4300 bei 32-Bit-Zugriffen mit 3507 MByte/s (Store) jedoch deutlich mehr heraus.
Athlon 64 X2 3800+ (2,00 GHz) Socket AM2 DualDDR2-800 CL4: Im Cache ermöglicht die CPU maximal 15.170 MByte/s (Store). Die Bandbreite des DDR2-800-Speichers liegt bei 2589 MByte/s.

64-Bit-Transfer

Hier testen wir mit tecMem die Performance mit den 64-Bit-Load und -Store-Kommandos aus dem MMX-Befehlssatz. Die Transferrate ist hier schon deutlich höher als bei den 32-Bit-Kommandos, da die CPU mit jedem Befehl mehr Daten transferieren kann.

Core 2 Duo E4300 (1,80 GHz) DualDDR2-800 CL4: Jetzt erreicht der L1-Cache-Durchsatz 13.732 MByte/s. Im Speicher transferiert der Core-Prozessor mit 5009 MByte/s (Load) deutlich mehr als bei 32-Bit-Kommandos.
Athlon 64 X2 3800+ (2,00 GHz) Socket AM2 DualDDR2-800 CL4: Im L1-Cache sind maximal 20.386 MByte/s möglich. Im Speicher erreicht die Socket-AM2-CPU bei 64-Bit-Kommandos mit 3406 MByte/s (Load) wieder deutlich weniger Durchsatz als die Intel-CPU.

128-Bit-Transfer

Mit den 128-Bit-SSE-Befehlen lässt sich die maximale Cache- und Speicher-Performance ermitteln, die eine CPU erreichen kann.

Core 2 Duo E4300 (1,80 GHz) DualDDR2-800 CL4: Im L1-Cache erreicht die CPU maximal 27.462 MByte/s. In der zweiten Pufferstufe sind es 11.329 MByte/s. Im Speicher liegt die Bandbreite bei 4571 MByte/s (Load, 8-MByte-Blöcke).
Athlon 64 X2 3800+ (2,00 GHz) Socket AM2 DualDDR2-800 CL4: Der Cache erlaubt eine Transferrate von 15.299 MByte/s, im Speicher sind 3412 MByte/s möglich.

Energieverbrauch

AMD und Intel spezifizieren den Energiebedarf ihrer Prozessoren mit der Thermal Design Power (TDP). Bei diesem Wert handelt es sich um ein theoretisches Maximum – in der Praxis liegt der Energiebedarf der Prozessoren in der Regel selbst bei hoher Auslastung darunter. Die CPU-Kühler müssen aber für diese TDP-Werte entsprechend dimensioniert sein.

Interessanter ist der reale Energieverbrauch der kompletten Plattform – ohne Monitor. Unsere Testplattformen unterscheiden sich lediglich beim Mainboard und natürlich der CPU. Grafikkarte, Netzteil, Festplatte, Soundkarte und wenn möglich der Speicher sind identisch. Damit lassen sich praxisnahe Aussagen treffen, wie sehr der Prozessor den Energieverbrauch der Plattform beeinflusst.

Im folgenden Diagramm vergleichen wir den Systemverbrauch unter Windows im „Leerlauf“ ohne aktivierten Energiesparmodus:

Regungslos: Läuft nur der Windows-Desktop ohne CPU-Belastung, so zeigt sich die Intel-Plattform mit neuen Core 2 Duo E4300 fast so genügsam wie mit dem mobilen Core Duo T2600. Sehr sparsam geht auch der Athlon 64 X2 3800+ (35 Watt TDP) mit der Energie um. Die Core-2-Prozessoren distanzieren sich deutlich von den NetBurst-CPUs.

Jetzt sind die Energiesparfunktionen Intel SpeedStep und AMD PowerNow! (Cool’n’Quiet) zum dynamischen Senken von Taktfrequenz und Core-Spannung aktiv. Windows befindet sich weiterhin im „Leerlauf“:

Sparfüchse: Aktiviert man bei AMD PowerNow!, so sind viele Athlon-64-Plattformen mit DDR2-Speicher genügsamer als Intels Core-2-CPUs. Bei den Intel-CPUs sinkt der Energiebedarf im Leerlauf mit SpeedStep nur marginal, weil bei den Prozessoren bereits andere Powersave-Technologien greifen. SpeedStep hilf bei den Intel-CPUs Energie zu sparen, wenn die Prozessorauslastung im „mittleren“ Bereich liegt.

Sind die Prozessoren, der Speicher sowie die Grafikkarte unter hoher Last, so steigt der Energiebedarf der Plattformen auf folgende Werte:

Full Power: Unter Volllast agiert die Socket-AM2-Plattform mit der 35-Watt-CPU Athlon 64 X2 3800+ EE SFF sparsamer als alle Konkurrenten. Jetzt macht sich der niedrige TDP-Wert des Prozessors noch deutlicher bemerkbar als im Leerlauf. Aber auch der neue Core 2 Duo E4300 fordert sehr wenig Energie.

Listen- & Straßenpreise

Hinsichtlich der Preise empfiehlt es sich, gelegentlich einen Blick auf die offiziellen Listen der CPU-Hersteller zu werfen. Bei AMDs Preisliste gab es am 05. Dezember 2006 die letzten Änderungen. Intels Preisliste wurde am 24. Dezember 2006 aktualisiert.

OEM- und Straßenpreise im Vergleich

Modell

Taktfrequenz /FSB [MHz]

Listenpreis [US-Dollar]

Straßenpreis [Euro]

Socket 939

Athlon 64 3200+ S939

2000 / 1000

81

60

Athlon 64 3500+ S939

2200 / 1000

91

70

Athlon 64 3800+ S939

2400 / 1000

108

75

Athlon 64 X2 4200+ S939

2200 / 1000

187

160

Athlon 64 X2 4600+ S939

2400 / 1000

240

225

Socket AM2

Athlon 64 FX-62

2800 / 1000

713

700

Athlon 64 X2 5200+

2600 / 1000

403

250

Athlon 64 X2 5000+

2600 / 1000

301

225

Athlon 64 X2 5000+ EE 65 nm

2600 / 1000

301

k.A.

Athlon 64 X2 4800+ EE 65 nm

2500 / 1000

271

k.A.

Athlon 64 X2 4600+

2400 / 1000

240

175

Athlon 64 X2 4600+ EE

2400 / 1000

240

180

Athlon 64 X2 4400+ EE 65 nm

2300 / 1000

214

k.A.

Athlon 64 X2 4200+

2200 / 1000

187

140

Athlon 64 X2 4200+ EE

2200 / 1000

187

140

Athlon 64 X2 4000+ EE 65 nm

2100 / 1000

169

k.A.

Athlon 64 X2 3800+

2000 / 1000

152

110

Athlon 64 X2 3800+ EE

2000 / 1000

152

110

Athlon 64 X2 3800+ EE SFF

2000 / 1000

k.A.

150

Athlon 64 3800+

2400 / 1000

108

80

Athlon 64 3500+

2200 / 1000

91

75

Athlon 64 3500+ EE SFF

2200 / 1000

k.A.

k.A.

Athlon 64 3200+

2000 / 1000

81

70

LGA775

Core 2 Extreme QX6700

2670 / 1066

999

965

Core 2 Extreme X6800

2930 / 1066

999

960

Core 2 Quad Q6600

2400 / 1066

851

850

Core 2 Duo E6700

2670 / 1066

530

485

Core 2 Duo E6600

2400 / 1066

316

300

Core 2 Duo E6400

2130 / 1066

224

220

Core 2 Duo E6300

1860 / 1066

183

180

Core 2 Duo E4300

1800 / 800

163

155

Pentium D 945 (kein VT)

3400 / 800

163

150

Pentium D 925 (kein VT)

3000 / 800

133

125

Pentium D 915 (kein VT)

2800 / 800

113

110

Pentium D 820

2800 / 800

93

90

tecCHANNEL Preisvergleich & Shop

Produkte

Info-Link

Prozessoren

Preise und Händler

Fazit

In der „puren“ Integer- und Floating-Point-Performance wie dem SPEC CPU2000 setzt sich auch der kleine Core 2 Duo E4300 vom Athlon 64 X2 3800+ deutlich ab. Doch bei vielen Anwendungen liegen beide CPUs auf einem Leistungsniveau. Die absolute Dominanz wie bei den Mainstream- und Highend-Modellen ist in der Preisklasse bis 150 Euro passe.

Sehr erfreulich – beim Core 2 Duo E4300 und Athlon 64 X2 3800+ - ist der genügsame Umgang mit der Energie. Beide Prozessoren eignen sich bestens für sehr leise Office-Rechner oder im Wohnzimmer einzusetzende Multimedia-PCs.

Die besonders von AMD vorgenommenen massiven Preissenkungen in den letzten Monaten machen beispielsweise auch einen Athlon 64 X2 5000+ wieder attraktiv. Für einen Straßenpreis von zirka 225 Euro erhält man eine Socket-AM2-CPU, die in vielen Bereichen mit dem ähnlich teuren Core 2 Duo E6400 konkurrenzfähig ist.

Intels Top-Modelle, beginnend mit dem Core 2 Duo E6700 bis hin zu den Quad-Core-Prozessoren arbeiten aber weiterhin in einer eigenen Liga. Hier wird auch die noch im ersten Quartal anstehende 65-nm-CPU Athlon 64 X2 6000+ wohl wenig ändern. Erst ab Mitte 2007, wenn die künftige K8L-Architektur in AMDs Desktop-Prozessoren Einzug erhält, sollte es wieder spannend werden. (cvi)

Testkonfiguration

Wir haben die Benchmarks unter dem Betriebssystem Windows XP Professional SP2 durchgeführt. Für den Linux-Test verwenden wir SUSE Linux 10.1 in der x86_64-Edition.

Intels Core 2 Duo E6400, E6700, die Pentium-D-900-Modelle sowie der Pentium 4 670 nehmen in einem Intel-Desktop-Board D975XBX Platz. Den Core 2 Duo E4300 und Core 2 Quad Q6600 testeten wir in der neuen Board-Revision D975XBX2. Die Mainboards verwenden den 975X-Chipsatz. Als Arbeitsspeicher steht jeweils DDR2-667-SDRAM mit CL4 in einer Dual-Channel-Konfiguration zur Verfügung. Alle Core-2-Modelle haben wir mit DDR2-800-Speicher (CL4) getestet.

LGA775-Plattform: Das D975XBX von Intel setzt auf den 975X-Express-Chipsatz. Das Mainboard unterstützt den Pentium 4, Pentium D, Pentium Extreme Edition sowie die Core-2-CPUs.

Der Core Duo T2600 arbeitet in einem AOpen i975Xa-YDG mit Intels 975X-Express-Chipsatz und Socket 479M.

Core-Duo-Plattform: Das AOpen i975Xa-YDG mit Socket 479M setzt auf Intels 975X Express Chipsatz. Beim Speicher steuert das Board DualChannel-DDR2-667-SDRAM an.

AMDs Athlon-64-Modelle für den Socket AM2 testen wir in einem Asus M2N32-SLI Deluxe mit nForce-590-SLI-Chipsatz. Der CPU steht Dual-Channel-DDR2-800-SDRAM mit CL4 von Corsair zur Verfügung. AMDs Socket-939-Prozessoren arbeiten in einem MSI K8N Diamond Plus mit NVIDIAs nForce 4 SLI. Der Chipsatz unterstützt HyperTransport-Taktfrequenzen bis 1000 MHz sowie PCI Express. Auf dem MSI-Mainboard können die AMD64-CPUs auf DualDDR400-SDRAM CL2 zurückgreifen.

Socket-AM2-Plattform: Das Asus M2N32-SLI Deluxe verwendet als Chipsatz NVIDIAs nFORCE 590 SLI. Beim Speicher steuert das Board DualChannel-DDR2-800-SDRAM an.

Um gleiche Testbedingungen zu gewährleisten, wurden alle Testsysteme mit einer ATI Radeon X1900XTX in der PCI-Express-x16-Variante bestückt. Der Grafikkarte mit 512 MByte Grafikspeicher standen der Catalyst-Treiber 6.4 sowie DirectX 9.0c zur Seite. Einheit herrschte auch beim Arbeitsspeicher mit jeweils 1 GByte und den Massenspeichern - die Serial-ATA-II-Festplatte Maxtor MaxLine III mit 250 GByte Kapazität.