Höhere Lebensdauer dank Feldemissions-Displays

Hellere Flachbildschirme durch Kupfer-Nanodrähte

Ein Forscherteam an der University of Illinois at Urbana-Champaign (UIUC) hat einen Weg gefunden, um Bündel von Kupfer-Nanodrähten auf einer Vielzahl von Oberflächen zu züchten. Von der Entwicklung des Teams um Kyekyoon Kim und Hyungsoo Choi könnten speziell Feldemissions-Displays (FED) profitieren.

FEDs funktionieren ähnlich wie klassische Bildröhren, sind vergleichbar hell, aber extrem flach. Die Forscher haben den Einsatz der Kupfer-Nanodrähte in einem FED getestet und sind der Ansicht, dass die neuartigen Flachbildschirme durch die Verwendung der Kupfer-Nanodrähte haltbarer gemacht werden können.

In dem FED werden von den Spitzen der Nanodrähte Elektronen emittiert, die auf eine Phosphorschicht treffen und so ein Bild erzeugen. Das Prinzip ähnelt damit dem klassischer Kathodenstrahlbildschirme und verspricht vergleichbare Helligkeit und Schärfe. Jedoch kommt bei jedem Bildpunkt eines FEDs ein eigenes Bündel von Nanodrähten zum Einsatz. Das ermöglicht nicht nur wesentlich flachere Displays, sondern sorgt auch gleich für Redundanz - ein defekter Nanodraht führt nicht zum Ausfall eines Pixels, was einen Vorteil des Konzepts etwa gegenüber LCD-Flachbildschirmen darstellt. Die Kupfer-Nanodrähte könnten auch bei deutlich geringerer Spannung operieren, als sie in Kathodenstrahlbildschirmen zum Einsatz kommen. Statt bei etlichen Kilovolt könnten sie bei nur 100 Volt effizient emittieren, so Kim gegenüber dem Magazin Technology Review. Dafür sei die feine Spitze der Kupfer-Nanodrähte verantwortlich.

Diese Spitze ist ein Resultat des Fertigungsprozesses. Auf einer beliebigen Unterlage - Silizium oder Glas kämen laut den Forschern ebenso in Frage wie Metall oder Plastik - werden bei Temperaturen von 200 bis 300 Grad Celsius mittels chemischer Dämpfe die Drähte gezogen. "Wir können Wälder freistehender Kupfer-Nanodrähte mit kontrollierter Dicke und Länge züchten", beschreibt Kim. Ohne Katalysten könnten so fünfeckige Kupfer-Nanodrähte von 70 bis 250 Nanometern Dicke entstehen, die allesamt in einer feinen Spitze enden. Sie seien generell für den Einsatz in elektronischen Geräten geeignet, das FED nur ein Anwendungsbeispiel. "Unsere experimentellen Ergebnisse zeigen, dass Nanodraht-Bündel zu länger haltbaren FEDs führen könnten", betont Kim.

Das Problem der Haltbarkeit von FEDs ist ein wesentlicher Grund, warum die Technologie noch nicht bereit für den Massenmarkt erscheint. Zum einen müsse ein Vakuum zwischen Emittern und phosphorbeschichtetem Glas erhalten werden, zum anderen könnten die Emitter mit der Zeit zerfallen, erklärt David Barnes vom Marktforschungsunternehmen DisplaySearch. Sowohl Vakuum als auch Emitter über eine zehnjährige Lebensdauer zu erhalten, sei eine Herausforderung. "Kupfer könnte etwas robuster sein", bestätigt Barnes die Einschätzung der UIUC-Forscher. Bei industriellen Bemühungen um FEDs etwa von Motorola und Samsung kommen derzeit Kohlenstoff-Nanoröhren als Elektronen-Emitter zum Einsatz. Der Sony-Ableger Field Emission Technologies arbeitet mit konischen, metallischen Emittern. (pte/hal)